
Legacy Systems Enablement:
Part III – Development
Environment Essentials

TECHNICAL SUPPORT October ‘98 www.naspa.net

BY RICHARD B. VIPOND

THE goal of this four-part series is to
demonstrate how my client’s site

is creating an open systems development
environment model from which they can
more readily migrate into a fully functional
object-oriented environment such as CORBA.

Part I (July 1998) set the stage for this
four-part series and examined how companies
are rushing to take advantage of the Internet
and all the potential it holds for the future
of the enterprise. However, as I pointed out,
these companies also need to embrace the
legacy systems that have supported their
enterprise for all these years.

In Part II (August 1998), I examined the
criteria necessary for selecting a development
tool but did not specifically list the products
we have reviewed at my client’s site.

This article further examines our open
development environment model, which
was presented in Part II, as well as software
configuration management (SCM) software
and the object repository. I will also further
discuss the CORBA standard as well as the
other standards that are being adopted by
select companies and vendors. Additionally,
I will explain how GUI and WYSIWIG
development tools will become vital to the
future success of application development
and examine their relationship to current
“bleeding edge” development concepts.

APPLICATION DEVELOPMENT WITHIN
THE ENTERPRISE

Our open development environment
model will consist of numerous tools, tech-
nologies and standards that must conform
to the fundamental principles outlined in
the previous articles. Now that the applica-
tion development tools have been selected,
we will see how they should all fit and work

together. The most important principle is
using proven open technology standards in
the design of all systems. While referring to
Figure 1, realize that all the tools being
used will create code that will fit into some
type of object repository. This repository
will become an integral part of our open
development environment model and will
be controlled by an SCM program that
manages the enterprise. In the future, a
product like IBM’s Component Broker,
which manages the CORBA environment,
will ultimately manage the global develop-
ment environment. This will be discussed
in the concluding article.

Application development within an
enterprise will consist of existing legacy
system programs, existing standards being
enforced and new development efforts, all
of which must transition into our open
development environment model.

Existing Legacy System Programs
Our existing legacy system programs are

fundamental in our quest to preserve and
utilize their functions. There are several
reasons we may want to use these programs
directly, rather than indirectly through the
use of pseudo screen scraping development
tools or other development tools that merely
mask the original legacy-system-based
interface. The most obvious reason to utilize
legacy programs directly is because of the
performance overhead associated with any
bridge, gateway or development tool.

The object-oriented (OO) capabilities of
programming languages such as OO-COBOL
allow us to utilize the programs within our
legacy system environment. Current C++
code can also be wrapped as a Java Bean
and introduced into the OO environment. I

The next step in our goal of

Internet-enabling our legacy

systems is to examine how the

numerous tools, technologies

and standards selected will

fit and work together.

© 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

October ‘98 TECHNICAL SUPPORTwww.naspa.net

predict that all programming languages will
allow for OO capabilities in the near future.

The biggest obstacle to using compiler
OO capabilities will be in how the legacy
applications have been designed and struc-
tured. Since most legacy programs have been
poorly designed and structured or are the
result of years of maintenance, thus creating
a poor design and structure, I think most
companies will find that rewriting these
applications using our open development
environment model principles will produce
the best results.

Design principles for OO applications
rely on properties such as simplicity,
reusability, security and good performance.
For these properties to be effective, an
object should implement a solution to only
one problem and delegate responsibility for
implementation of solutions for all problems
other than its own to other objects.

Existing Standards Being Enforced
Part I mentioned a few current standards

that when used with gateways or bridges
can be incorporated into our open develop-
ment environment model. It’s important to
remember that gateways and bridges mean
extra overhead, so make sure that the tool or
technology that implements the open stan-
dard justifies the additional overhead
required to use it.

Some examples of such object-oriented
application development models include

Application development within an
enterprise will consist of existing
legacy system programs, existing
standards being enforced and new
development efforts, all of which

must transition into our open
development environment model.

Microsoft’s Distributed Component Object
Model (DCOM), which like CORBA,
separatesthe object interface from its
implementation and requires that all interfaces
be declared using an Interface Definition
Language (IDL). DCOM is not based on
the classical object model of CORBA.
DCOM does not support IDL-specified
multiple inheritance and thus, achieves
object reuse via containment and aggregation
instead of inheritance. In other words, DCOM
objects do not maintain state between
connections and thus, cannot be reused to
create a unique object. These differences
between CORBA and DCOM are circum-
vented by a method known as the Java/COM
Integration Bridge, which allows CORBA
compliance and subsequent use in our open
development environment model.

Remote Method Invocation (RMI) is a
technology that uses remote Java objects,
whose methods can be invoked from another
Java Virtual Machine (JVM), even across a
network. However, RMI can not communi-
cate with other Object Request Brokers
(ORBs) or languages such as CORBA’s
Internet Inter-ORB Protocol (IIOP). Since
RMI needs the services of IIOP to be a suit-
able backbone for Internet use, RMI
requires a bridge that allows us to write
distributed objects in pure Java. The bridge
currently used for this is called Caffeine
from Netscape and Visigenic, and it provides
all the benefits of CORBA transparently
from Java and allows for subsequent use in
our open development environment model.

Hypertext Transfer Protocol/Common
Gateway Interface (HTTP/CGI) was the
predominant model for creating three-tier
client/server applications over the Internet.
However, the protocol is clumsy, stateless,
slow and resource-intensive on the server.
Netscape is currently addressing this problem
by bundling a CORBA ORB with every
browser. This will provide CORBA/IIOP
capabilities. Java Bean wrappers encapsulate
CGI Languages, such as C++, which provides
CORBA compliance. Subsequently, these
methods will allow for use in our open
development environment model.

Peer-to-peer communication that hides
the details of the network (commonly
referred to as simply sockets) was the only
way for a Java program to communicate to
the world before CORBA and RMI.
However, sockets introduce a major main-
tenance and programming nightmare and
are the reason you need an ORB. ORBs
hide these nightmares and let you program
at a higher level of abstraction using
CORBA or RMI methods. In the future,
these methods will allow for use in our
open development environment model.

Extensible Markup Language (XML) is a
language that defines other languages. It
also has the potential to give structure and
meaning to the information contained in
HTML documents or any other data form,
making such information as searchable and
structured as the information locked in a
database. The potential of such a meta-
language is huge if it is implemented as an
open standard. Right now, XML is an open
standard, and if it continues to evolve along
open lines, it could drastically improve
Web-based development and fit nicely into
our open development environment model.

S Y S T E M S

Figure 1: Example of Concept Requirements

© 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

www.naspa.netTECHNICAL SUPPORT October ‘98

S Y S T E M S

New Development Efforts
New application development efforts

should use a combination of tools, processes
and languages that conform to our open
development environment model. New
development efforts will also include those
legacy programs that do not lend themselves
well to the OO capabilities of the various
compilers being introduced. I currently
prefer the Java programming language for
application development; however, we also
need to be aware of existing staff expertise
and resources currently being utilized. The
introduction of Java to the computing
environment has finally given CORBA the
vehicle it needs to be implemented in the
real world.

The existing expertise and resources will
comprise most of the standards previously
mentioned and will be found in all the various
Integrated Development Environments (IDE),
languages and tools that must all conform
to our open development environment
model principles. All code that is produced
from these IDEs, languages and development
tools will have to be maintained in some
type of object repository. Code reuse is a
fundamental requirement to on open tech-
nology standard and an object repository will
be mandatory. At the time of this writing,
we have not yet determined what object
repository we will be using. We realize that
major advances will undoubtably be made in
object repository technology in the future.

THE KEY IS STANDARDS
We must only concentrate on standards

that follow and incorporate what CORBA

establishes. Remember, in the event we do
want to adopt another standard in the
future at least we will have a standard to
convert from if we insist on using
CORBA as the foundation. If we use a
tool, technology or standard that is not
CORBA compliant, that tool, technology
or standard should be used with the under-
standing that it is a short-term fix to be
remedied by a CORBA-compliant solution
in the near future.

APPLICATION DEVELOPMENT IN THE 21ST CENTURY
I have come to realize that GUI develop-

ment tools are a mandatory requirement. I
feel GUI and WYSIWIG development tools
are vital to the future success of application
development in the 21st century. The com-
plexity of application development in
relation to application objects that will have
to be manipulated and the eventual global
location of these objects will require SCM
tools that rival the current capabilities of the
bleeding-edge technology, called VRML
(Virtual Reality Modeling), which I’ve been
studying for the past three years. GUI and
WYSIWIG development tools are a precursor
to VRML type application modeling tech-
niques just as CAD was the precursor to
current VRML modeling technology.

For future SCM tools to work, we must
use products that contain all of the elements
necessary for the creation of an open devel-
opment environment. Communication with
programs outside of the development tools
environment must be supported, as must
communication between application programs
and objects. The concept of communicating

with a program that isn’t actually executing
refers to dynamic code reuse and code
manipulation of objects. The code produced
by the development tool must be able to
accept input parameters from other programs
or processes outside its own execution envi-
ronment. This capability is currently available
in a new technology called VRML. Because
of its necessity to maintain constant and
direct contact with every object of its nodes,
VRML is a highly complex language. It can
only be programmed using a visual modeling
tool, and, in fact, the only reason to learn
the language is to perform minor tweaking
and performance modifications to enhance
the final result. All of the development and
modeling concepts inherent in VRML tech-
nology can be directly applied to future
application development and SCM tools.

The concluding article will complete the
analysis of our open development environ-
ment model by examining its integration
with the WWW servers and further relate
how important current bleeding-edge
developments are in relation to the concept
of a global development environment.

NaSPA member Richard B. ViPond is a senior consultant
for Ciber Network Services, Inc.

Special thanks to NaSPA members and tech-
nical editors Dwight S. Miller and Stephen
J. Pryor for their help with this article.

©1998 Technical Enterprises, Inc. For reprints
of this document contact sales@naspa.net.

ts

© 1998 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

